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The  search  for  a  favorable  and  robust  operating  point  of a separation  process  represents  a complex
multi-factor  optimization  problem.  This  problem  is typically  tackled  by  design  of  experiments  (DoE)  in
the factor  space  and  empiric  response  surface  modeling  (RSM);  however,  separation  optimizations  based
on  mechanistic  modeling  are  on  the rise.  In this  paper,  a  DoE–RSM-approach  and  a mechanistic  modeling
approach  are  compared  with  respect  to  their  performance  and  predictive  power  by  means  of a case  study
– the  optimization  of  a multicomponent  separation  of  proteins  in an  ion  exchange  chromatography
step with  a nonlinear  gradient  (ribonuclease  A,  cytochrome  c and  lysozyme  on SP  Sepharose  FF).  The
results  revealed  that  at  least  for complex  problems  with  low  robustness,  the  performance  of the  DoE-
approach  is significantly  inferior  to the  performance  of  the mechanistic  model.  While some  influential
factors  of  the  system  could  be detected  with  the  DoE–RSM-approach,  predictions  concerning  the  peak
teric mass action (SMA)
eparation optimization

resolutions  were  mostly  inaccurate  and  the  optimization  failed.  The  predictions  of  the  mechanistic  model
for separation  results  were  very  accurate.  Influences  of  the  experimental  factors  could  be quantified  and
the  separation  was  optimized  with  respect  to several  objectives.  However,  the  discussion  of  advantages
and  disadvantages  of  empiric  and  mechanistic  modeling  generates  synergies  of  both  methods  and  leads
to a new  optimization  concept,  which  is  promising  with  respect  to  an  efficient  employment  of  high
throughput  screening  data.
. Introduction

Ion exchange chromatography (IEC) is a widely used applica-
ion in biomolecular downstream processing. In IEC, the main focus
s the separation of a target component from a protein mixture

 preferably in a step elution, but complex separation problems
ay  require linear or even nonlinear gradient elutions. In addition

o the shape of the elution gradient, the quality of a separation
epends on several process factors, among others the employed
uffers and salts. Furthermore, the objectives of a separation step
re not only defined by high yields and product purity, but also by
dditional demands, such as process robustness, financial and eco-
ogical constraints. Thus, the optimization of a separation step is a
ultiparametric and multiobjective problem.
The approaches to tackle problems of this kind are various

nd can be roughly divided into search algorithms and modeling
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ork referred to in this publication.
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© 2012 Elsevier B.V. All rights reserved.

methods. Various successful applications of search algorithms
for separation optimization have been published during the last
30 years. The application of simplex algorithms, for example,
has been proved successful for example in [1–3]. Recently, more
robust search algorithms like neural network approaches (see in
[4–6]), simulated annealing (for example in [7]) and evolutionary
algorithms (see [8,9]) have been successfully applied to optimiza-
tion in chromatography. While the low mathematical effort of
search methods and their high performance in noisy systems was
demonstrated in these research publications, a critical drawback
of search methods is given by the tremendous experimental
effort and the low knowledge gain about the examined system,
particularly about sensitivity and robustness aspects.

However, the importance of process understanding, as well as
robustness and sensitivity analyses was  only recently emphasized
in guidelines, published by the US Food and Drug Administration
[10]. Consequently, multivariate optimization approaches based
on design of experiments (DoE) and empiric response surface
modeling (RSM) are increasingly applied in bioseparation process

development, because they allow for the characterization of design
factor spaces and for the calculation of optimal system settings and
their robustness. Similar to the application of search algorithms,

dx.doi.org/10.1016/j.chroma.2012.03.029
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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rst publications on the application of DoE–RSM in the field of ion
xchange chromatography have been published in the eighties,
or example by [11] who optimized a separation step in reversed-
hase chromatography based on a full-factorial design. DoE–RSM
echniques were successfully applied and further developed in
hromatography studies, for example in [12] (full factorial design),
13] (block design and partial least squares-regression) and [14]
fractional factorial design, application of modeling software).
eviews on DoE–RSM methods, like in [15], comparison studies
f regression algorithms [16] or the formulation of very specific
egression functions like in [17] demonstrate that DoE–RSM is
ell established in the optimization of IEC steps.

Alternatively to this empiric modeling approach, the application
f mechanistic modeling for the optimization of IEC steps is on the
ise due to time efficiency of algorithms and increased calculation
ower (see argumentation lines in [18,19]). Mechanistic modeling
eans to employ functional relationships between physical param-

ters in chromatography and retention times or even complete
hromatograms. Important reviews on mechanistic modeling are
or example [18,20,21] or [22] Successful optimizations based on

echanistic modeling of IEC processes have been demonstrated for
tep gradients [23], linear gradients [24] and displacement systems
25]. Additionally, a validated model proves to be an accurate pre-
iction tool and lends itself to application in process control, which
as demonstrated for example in [26,27]. A drawback of separa-

ion optimization based on a mechanistic model seemed to be the
ery time consuming procedure of repeatedly solving the underly-
ng partial differential equation system. However, recently a very
fficient and time-optimized solver was introduced by [28] that
llows for model-based optimization in a few minutes. As a result,
he optimization based on mechanistic modeling is now compet-
tive to the DoE–RSM approach with respect to time efficiency.
his will be the dooropener concerning research on the advan-
ages and benefits of mechanistic modeling, especially compared to
he established approaches in chromatography process optimiza-
ion. As to the authors’ knowledge there are no studies, where both
pproaches are compared based on the same set of data. Too little
nformation is available on the predictivity quality of mechanis-
ic modeling in comparison to the DoE–RSM approach, inside and
eyond the design space. Furthermore, to the best of the authors’
nowledge, there is only little research on the performance of DoE
n separation problems with low robustness.

However, low robustness is very common in separation prob-
ems, as slight changes in the level of salt buffers in step or gradient
lutions have significant influence on retention times and peak
hapes. Considering this, the optimization performance of a model
ased on mechanistic understanding should exceed the perfor-
ance of an empiric model. An important aim of the manuscript is

o show, if the difference in performance is significant.
Another drawback of the previously cited optimization studies

s the fact that they have mostly been limited to a fixed objective
or the separation process. However, as shown before, separation
ssues are normally multiobjective or objectives are changed in the
evelopment of a chromatography process. Thus, approaches for
ptimization should be flexible with respect to changing objectives
nd should not demand for re-calibration.

In this paper, the DoE–RSM approach and the mechanistic
odeling approach are compared with respect to the mentioned

ssues. After a theoretical comparison of both approaches, they are
pplied to a case study – the optimization of a multicomponent-
eparation in an IEC step. As two of the proteins have close
soelectric points (cytochrome c: 10.0–10.5, lysozyme: 11.35), a

ilinear gradient that is a series of two linear salt elution gradi-
nts, was chosen for the separation step in analogy to Refs. [8,26].
ue to the bilinear gradient, this model system is rather complex
nd demands for robustness analyses. According to a D-optimal
ogr. A 1237 (2012) 86– 95 87

onion design, experimental data for optimization was planned and
the chromatography runs randomly executed. Based on this ran-
domly derived DoE-planned data, the RSM-approach as well as
the approach of mechanistic modeling in IEC were used for deter-
mination of the factor effects on the chromatographic result and
for optimization. Further, the additional effort for separation opti-
mization with respect to changing objectives was analysed, as well
as model predictiveness regarding factor sets beyond the original
design space. The application of both modeling approaches to this
case study allowed for an improved comparison of performance
and effort with respect to multivariate separation issues.

2. Theory

2.1. Response surface modeling and design of experiments

Response surface modeling (RSM) is a statistical technique for
the a posteriori analysis of experimental data; a regression function
t’stof whatever nature – the response surface model – is fitted to the
experimental results. Common applied response surface models in
IEC have linear or quadratic complexity and are empiric (not mech-
anistic). Popular regression models are, for example, multivariate
quadratic functions.

Let x1, x2, . . .,  xn be the n selected factors for process description
and yi the response/objective value to a specific factor setting x1i,
x2i, . . .,  xni. The regression fit of an n-variate quadratic function to
the set of m responses y1, . . .,  ym, is described by:

yi = a1 + b1x1i + b2x2i + . . . + bnxni + c1x2
1i + c2x2

2i
+ . . .

+cnx2
ni + d1,2x1ix2i + d1,3x1ix3i + . . . + dn−1,nxn−1,ixni (1)

for all 1 ≤ i ≤ m.  The parameter a1 is a constant added to the func-
tion (see intercept terms in linear regression); furthermore, the
values of the parameters bk for 1 ≤ k ≤ n display the magnitude of
linear influence of the factors xk. The values of the parameters ck
with 1 ≤ k ≤ n quantify quadratic influences of the factors xk and the
mixed effects/interaction terms of two-components are quantified
by the parameters d12 to dn−1,n. A higher than quadratic complexity
in the examined system leads to high prediction errors. However,
high prediction errors give no hints as to the reasons in detail and
no direction how to correct the model.

RSM is often behold as a DoE-technique, which is not cor-
rect. On the contrary, if a quadratic surface has to be fitted to
the results, a well-selected DoE provides an adequate planning of
the experiments. Thus, the idea of ‘DoE’ summarizes a diversified
collection of statistical approaches for the maximization of spe-
cific information in experimental planning. The advantage of the
DoE–RSM-approach, compared to simple screenings, is the provi-
sion of experimental designs with high information contents, quick
information on reasonable factor ranges and first evidence of factor
effects and system robustness.

Common and frequently used experimental plans are full-
factorial designs or fractional–factorial designs. They deliver
regular screening patterns over a factor space and provide the infor-
mation for multilinear quadratic response models. Other designs
meet special experimental constraints or a-priori-information on
the system. For example, space filling designs are best when there

is little or no information about the underlying effects of factors on
responses while D-optimal designs guarantee high information in
the single experiment by minimizing the covariance of the param-
eter estimates.
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.2. Theory on mechanistic modeling

A mechanistic model imitates the physical processes that occur
n the observed system and describes them based on a set of math-
matical equations. Thus, typical rate models for chromatographic
rocesses contain convective and diffusive flows through a com-
ressed pile of particles on the column level and the imitation of
ass transfer resistances and surface interactions on particle level.

n IEC modeling the transition of components from column to par-
icle level is commonly modeled assuming a film; the sorption of
rotein on the particle surface can be imitated by the steric-mass-
ction-(SMA) model, developed by [29] and commonly used for the
odeling of salt gradient elutions in IEC, for example in [30–32].

or the solution of the whole differential-algebraic equation sys-
em, Danckwerts’ boundary conditions were applied [33]. For more
etails on rate models see [18].

In this case study, the decision concerning the most reasonable
odel complexity was taken in favor of the lumped transport-

ispersive approach. This model, including convective, dispersive
rocesses, mass transfer resistances and the SMA  model for sorp-
ion kinetics, was solved in MatLab® on a Dual Core Processor with
.81 GHz in approximately 10 s with a density of 200 knots over
he whole column length. That is a time span of reasonable brevity,
ince the model has to be solved hundreds of times in model-based
ptimization.

The time- and position-dependent change of concentration on
olumn level for the ith component, ∂ci/∂t, is described by Eq. (2).
he first term on the right hand side of Eq. (2) describes the convec-
ive transport through the column, the second term the dispersive
ransport and the third term the transport through a film to the
article surface.

∂ci

∂t
= −uint

∂ci

∂x
+ Dax

∂2
ci

∂x2
− 1 − εc

εc
· 3

rp
keff,i[ci − cp,i] (2)

int denotes the interstitial velocity, εc the column porosity, rp the
article radius and keff,i the lumped film diffusion coefficient. Dax

isplays the axial dispersion, more precisely, a combined effect of
ispersion and diffusive processes, dispersion being eddies and all
ffects implied by three-dimensionality.

The time and position-dependent change of concentration
n particle level for the ith component, ∂cp,i/∂t, is analogously
escribed by Eq. (3):

∂cp,i

∂t
= 3

εprp
keff,i[ci − cp,i] − 1 − εp

εp

∂qi

∂t
(3)

ith qi denoting the concentration of particle-bound component i
nd εp the particle porosity, The first term on the right hand side of
q. (3) displays the mass transfer to particle surface and the second
erm describes ad- and desorption processes on particle level, i.e.
he interaction between mobile and bound phase.

For the description of ad- and desorption processes, the SMA
pproach was embedded into the mechanistic model. The model
quations for n components (n = 1[salt] + number of protein com-
onents) are given by

∂qi

∂t
= kads,iciq1

�i − kdes,ic
�i
1 qi i > 1 (4)

 = q1 +
n∑

i=2

�iqi (5)

n∑

1 = q1 −

i=2

�iqi (6)

Eq. (4) expresses the time dependent change of the concentra-
ion of surface bound component i. kads,i denotes the adsorption
ogr. A 1237 (2012) 86– 95

rate and kdes,i the desorption rate. The parameter � (ionic capacity
of the adsorbent) limits the available binding places and displays
the rivalry between salt concentration q1 and the other bound com-
ponents qi, 2 ≤ i ≤ n with their specific characteristic charges �i. q1,
the concentration of bound salt ions available for exchange with
the protein, is given by the total salt ion concentration q1 less the
shielded ions determined by the protein specific steric factors (�i)
in Eq. (6).  If the assumption of rapid equilibrium is valid (∂qi/∂t = 0),
Eqs. (4)–(6) can be linked to the SMA  isotherm:

ci =
(

qi

keq,i

)  (
c1

� − ∑n
i=2(�i + �i)qi

)�i

i > 1 (7)

where the parameter keq,i is the ratio of ad- and desorption coeffi-
cient.

SMA  parameters for the mechanistic model can be determined
based on data from gradient and breakthrough experiments (com-
pare [34]). The inverse method states a second, equally predictive
approach and is directly based on process data and the mechanistic
model (see [35]).

3. Materials and methods

3.1. Apparatus, column and software

The case study aims at an optimal separation of a three com-
ponent mixture on the adsorbent SP Sepharose FF by bilinear
gradients. The running buffer in all experiments was 20 mM sodium
phosphate buffer at pH 7. The buffer for elution purposes contained
additional 0.5 M NaCl. The three component mixture consisted
of lysozyme (chicken egg white, L651), ribonuclease A (bovine
pankreas, R4875) and cytochrome c (equine heart, C2506) from
Sigma (St. Louis, MO,  USA) dissolved in the low salt working buffer
to a concentration of 0.2 × 10−3 M.  Salts and 1 M NaOH for pH
adjustment were purchased from Merck (Darmstadt, Germany).
The chromatographic setup consisted of a prepacked HiTrap SP
Sepharose FF 1 ml  column and an Ettan LC system, both purchased
from GE Healthcare (Buckinghamshire, United Kingdom). The soft-
ware MODDE (Umetrics, Umeå, Sweden) was used for DoE and RSM
handling. The software Matlab (The Mathworks, Natick, ME,  USA)
was  used for the handling of the mechanistic model.

3.2. Gradient elution experiments

In all experimental setups the column was at first equilibrated
with running buffer for 10 column volumes (cv). This step was  fol-
lowed by an automated sample load of 20 �l protein mixture. Then
the column was washed for another two  cv, before a bilinear elu-
tion gradient was initiated. Every elution gradient was applied for
exactly 30 cv and quit with 100% high salt elution buffer, followed
by a 5 cv high salt wash step. Conductivity and UV-absorbances
at 280 nm and 528 nm were measured online at column outlet.
Cytochrome c absorbs not only radiation at 280 nm but addition-
ally at 528 nm;  this extra information was taken into account
when calculating the resolutions between the peaks and for the
SMA  parameter estimation by the inverse method (see Sections
3.3 and 3.4). The flow rate was  set constantly to 0.5 ml/min [ca.
0.22 × 10−3 m/s] in every process step.

The specific shape of a bilinear elution gradient was given by
three characteristic factors:
• Initial proportion of elution buffer in the running buffer: Start
[%].

• Proportion increment of elution buffer in the running buffer at
the end of the first part of the bilinear elution gradient: Slope [%].
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Table 1
Factor ranges for onion design 1.

Factor Unit Range

Start % 20–40
Length cv 10–20
Slope % 5–55
ig. 1. Three characteristic factors define the shape of the first gradient. The sec-
nd gradient is determined by the total elution volume (30 cv) and the final salt
oncentration of 0.5 M NaCl.

Length of the first gradient of the bilinear elution gradient:
Length [cv].

hile the overall gradient length was set constant to 30 cv and the
nal salt concentration of the gradient to 0.5 M NaCl. Fig. 1 shows
ow the shape of a bilinear gradient is defined by the three charac-
eristic factors Start, Length and Slope.

A manipulation of these factors influences the axis intercept,
ength and slope of the first gradient. For the second part of the gra-
ient these characteristics are implicit, due to the fixed end point of
he bilinear gradient at 30 cv and 100% elution buffer (0.5 M NaCl).

Fig. 2 shows a typical chromatogram resulting from an experi-
ent with a bilinear gradient. The preset shape of the gradient is

epicted in the dotted line. In all following chromatograms, always
he preset gradient shape will be shown and not the measured
onductivity, as these measurements did not go into modeling.
owever, the comparison of the actual conductivity to the results

rom mechanistical modeling showed excellent consistency. The
rey line depicts the absorption signal at 528 nm,  which meas-

res the concentration of cytochrome c. The black line depicts the
bsorption signal at 280 nm.  The first peak corresponds to the con-
entration of ribonuclease A and the second peak is the sum signal
or the concentrations of cytochrome c and lysozyme.

ig. 2. Typical chromatogram for the separation of ribonuclease A, cytochrome c
nd lysozme with a bilinear gradient. The dotted line shows the settings for the
lution gradient. Absorption at 528 nm (cytochrome c, grey) and 280 nm (all three
roteins, black) is measured online and continuously.
Fig. 3. 3D scatter plot of onion design 1.

3.3. The response surface modeling approach

The experiments were planned based on two  D-optimal onion
designs. Onion designs are space-filling designs recommended for
situations where the factor correlations are not well known. The
factor space is divided into layers around a center point, the number
of layers and the layer setup is determined by optimality criteria.
Onion designs provide information for nonlinear RSM and have
the additional advantage of not having to perform experiments
at the edges of the factor space (see [36,37] for more details).
Although a significant smaller number of experiments would have
been possible for a general DoE–RSM approach, a design with 32
measurement points was  chosen in this case study. This choice
was  made in order to prevent a failure of the DoE–RSM-approach
due to lack of information. The first design in the presented case
study (onion design 1) proposed 29 factor sets in the ranges given
in Table 1 and a threefold repetition of a central point for check
of reproducibility. The number and distribution of experiments
in a layer fulfilled the criteria of G-optimality, minimizing the
maximum variance of the predicted values. The distribution of mea-
surements can be seen in Fig. 3. The ranges for the second design
that was used in the case study are given in Table 2
A single factor set, consisting of three specific values for Start,
Length and Slope,  described the unique shape of a bilinear gradient.
All experiments, including the three center points, were performed
in random order. The center point of onion design 1 was placed in a

Table 2
Factor ranges for onion design 2.

Factor Unit Range

Start % 5–25
Length cv 15–30
Slope % 0–15
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The separation of the three component mixture (ribonuclease
A, cytochrome c and lysozyme on SP Sepharose FF) was to be opti-
mized. Two  approaches, a response surface modeling approach
0 A. Osberghaus et al. / J. Ch

egion, where good separation results were predicted by previous
igh-throughput screening studies on a robotic platform [8].

The DoE–RSM-approach establishes a functional relationship
etween the factors Start, Length, Slope on the one hand and the
verall peak resolution on the other hand (see Section 2.1). Conse-
uently, the sum of the adjacent peak resolutions was selected to
e the objective value that was to be maximized.

The resolutions were calculated along Eq. (8) (compare to [38]):

esP1,P2 = 2(�P1 − �P2)
4�P1 − 4�P2

(8)

P1, �P2 and �P1, �P2 are the characteristic first and second central
oments, which describe the location and width of a peak. The

eaks were deconvoluted based on the additional chromatogram
or cytochrome c displaying the absorbance at 528 nm.

In Eq. (8) two objectives (small peak width and large distance
f retention times) are connected to an objective function. This
s a common way  to handle multi-objective problems: the objec-
ives are combined and weighted in objective functions that have
o be maximized or minimized. Choosing resolution as objective
unction, both models will optimize the resolution exclusively.
n practice, the decision on the objective function is crucial and
trongly situation-dependent.

Let fRSM be the empiric model function, a multivariate quadratic
unction/response surface fitted to the resolution values. All coeffi-
ients of fRSM have to be estimated by the inverse method, detecting
stimators that induce the best fit of the response surface function
o the resolution data. Then, the factor values at the maximum of
his function are the characterization of a bilinear gradient that
eparates the three model proteins best, according to the selected
bjective, the maximal sum of resolutions.

.4. The mechanistic model approach

Similar to the coefficients in RSM, the mechanistic model has
arameters that have to be determined before model employment.
he parameters of mechanistic models for chromatography are
haracteristic values describing the geometry of the column, the
orosities of the packed bed, etc. (compare to Section 2.2). In this
tudy only the sorption parameters for the binding of protein to the
dsorbent surface had to be established; all other model parameters
ad been determined beforehand in [35]. The sorption parameters
ere determined by the inverse method, shortly explained in the
ext paragraph.

.4.1. Determination of SMA  parameters
Let c280(tj) be the time series of protein concentrations mon-

tored by absorption at 280 nm at column outlet at the points in
ime j = t0 · · · tend. Let c528(tj) analogously be the concentration of
ytochrome c monitored at 528 nm at column outlet. Let ĉ280(tj, �)
e the solution of the described mechanistic model for chromatog-
aphy for the sum of all three components concentrations at the
ame points in time. This solution is dependent from the modeling
arameters �. Let furthermore ĉ528(tj, �) be the solution of the same
echanistic model for the component representing cytochrome c.

et �fix be the previously determined set of model input parame-
ers and �est the set of model input parameters that are estimated
ased on all available data sets. Here, �est are the SMA  parameters
hat have to be estimated for all three components, ribonuclease A,
ytochrome c and lysozyme, based on 62 chromatograms (two 29
oint onion designs with triple center points) corresponding to the

actor settings �grad,k = {Start, Slope, Length}, 1 ≤ k ≤ 62. Aiming at

 best fit between model response and chromatographic data, the
roblem of the inverse method can be stated as an optimization of

 sum of least squares:
ogr. A 1237 (2012) 86– 95

res(�est) =
62∑

k=1

end∑
j=0

[(ĉ280(tj, �fix, �grad,k; �est) − c280(tj))
2

+ (ĉ528(tj, �fix, �grad,k; �est) − c528(tj))
2] (9)

minimizing res(�est). The minimization of Eq. (9) was  in all cases
performed with the Matlab®-procedure lsqnonlin.

3.4.2. Separation optimization
The case study aimed for an optimization of the separation

regarding high resolutions between adjacent protein peaks. The
resolution between the peaks can be maximized by minimizing
the peak overlaps. Let �grad denote the optimizable parameters, the
three factors Start, Length and Slope.  For the numerical optimiza-
tion of the separation process, the unknown parameters �optgrad
inducing the gradient of least overlap, are the solution of following
minimization problem:

res12(�grad) + res23(�grad) + res13(�grad) −→ min! (10)

with

resk,l =
tend∑
j=t0

(min(ĉk(tj, �fix, �grad), ĉl(tj, �fix, �grad))) (11)

ĉi(tj, �) being the concentration profile/chromatogram for compo-
nent i calculated by the mechanistic model, �fix are the mechanistic
model parameters that are fixed in the optimization (SMA param-
eters inclusive).

3.5. Comparison of approaches

The comparison between the described modeling approaches
has to be qualitatively as slightly different objective functions have
been chosen (compare Eqs. (8) and (10)). This choice has been made
in order to keep close to real applications by choosing objective
functions corresponding to the typical model response. While the
sum of resolutions calculated by Eq. (8) is directly inserted into the
DoE–RSM approach for model calibration the mechanistic model is
calibrated based on the complete chromatograms that were pre-
viously transformed to a time series of concentrations. Thus, the
response of the DoE–RSM approach will be a sum of resolutions
while the response of the mechanistic model will be a complete
noiseless chromatogram with a perfect baseline. To really perform
a quantitative comparison with the same objective function on
these different model responses, significant data transformations
and studies on noise in chromatographic data would have been
necessary. This was out of the scope of the manuscript. Although a
direct quantitative comparison between the approaches is impos-
sible, the authors are positive, that the shown results allow for a
meaningful qualitative comparison and a qualified discussion on
advantages and disadvantages.

4. Results
on the one hand and a mechanistic modeling approach on the
other hand, were employed for the separation optimization. Both
approaches were based on DoE-planned experiments and were to
be compared as to their optimizing and predictivity performance.
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The experiments with factor settings from Table 3 were per-
formed based on the instructions given in Section 3.2.  Fig. 7A shows
the experimental results for the factor set in the first column of
ig. 4. Surface contour plots based on 31 experiments from onion design 1. The f
left-hand subplot), 25 (center), 55 (right-hand). The contour lines show the predic

.1. Results of the response surface modeling approach

The plot in Fig. 4 is based on the experiments from onion design
 (see Table 1) and shows the response surface regression of the
hree explanatory factors (Start, Length and Slope)  to the resulting
um of peak resolutions, denoted on the level curves.

The three subplots illustrate three levels of the factor Slope.  The
ptimal region of factors in the design space leading to an overall
um of resolution close to 5, is located in the bottom right-hand
orner of the left-hand side subplot. Thus, an initial concentration
f about 20% salt in elution buffer, a gradient length of the first
radient of 20 cv and a flat slope are predicted to lead to optimal
eparation results. The supply of predictions over a region that as
ar as possible surrounds the optimal process conditions is neces-
ary for information on robustness. To keep the approach simple
nd follow typical procedures, the previously used DoE settings
ere applied for a second time with slightly shifted and enlarged

anges. Subsequently, the the whole set of 62 results was  analysed.
he experimental reproducibility rep was 0.97, calculated by the
ariation at the center points compared to the total variation of the
esponses:

ep = 1 − (1/2)
∑3

i=1(cpi − cp)2

1/(62 − 1)
∑6

i=12(xi − x)2
(12)

here cpi denote the objective values of the threefold repeated cen-
er points, xi the responses of 62 data points (including the center
oints) and the bar over a variable implies its mean value. To these
ata the RSM-method was applied. A quadratic model as initial
odeling guess is the most common approach in RSM. In a data-

ased model discrimination, the model with highest coefficient of
etermination and with no non-significant paramters (p-value ≤
.05) was chosen. The best-fitting response surface was a quadratic
odel function with interaction terms. The regression fit itself had

n adjusted coefficient of determination R2 of about 0.78, what
lready indicates a limited predictivity.

The coefficient plot in Fig. 5 shows the scaled and centered coef-
cients for the factors having most effect on the separation result
nd the factor interactions. The analysis shows that a long first
art of the elution gradient induces positive effects on the reso-

ution between the three protein components. This effect increases
onsiderably with rising gradient length, as the coefficient for
Length*Length’ is positive. The factor Slope has a slightly posi-
ive effect on the resolution of the peaks. Conversely, an increasing
alt concentration at gradient begin (factor Start), has a negative
ffect on the overall sum of peak resolutions. These results sug-

est that gradients with a gentle slope and a low salt concentration
t gradient beginning were most successful with respect to the
eparation problem. In addition, a positive interaction between
tart and Slope with regard to high resolutions is predicted by the
 Start and Length span the space, the factor Slope is illustrated in three levels: 5
lues for the overall sum of resolutions in the design space.

model. This interaction effect can be explained by the fact that the
combination of both parameters mainly decides on the slope of the
first gradient.

The contour plots in Fig. 6 are based on all results from onion
design 1 and onion design 2. The three subplots illustrate three
levels of the factor Slope. The optimal set of factors with respect
to a high resolution is located at the right-hand side of the left-
hand side subplot. Thus, an initial concentration of about 20% salt
in elution buffer and a gradient length of 30 cv together with a very
even slope showed the best results. Though placed at the border
of the design space, the optimal gradient length of 30 cv could not
be further optimized, since the maximum possible gradient length
was  fixed to 30 cv. The optimal region is very small and the gradient
within the contour plot is steep. This indicates a low robustness of
the examined system. Small changes in the elution gradient will
have significant effects on the separation quality.

Three quantitative RSM-based predictions for the optimal set of
factors with respect to a maximal, a medium and a minimal overall
sum of resolutions are given in Table 3. RSM predicted a maximal
overall resolution for a gradient of 30 cv with constant 10% high
salt elution buffer, a medium resolution for the factors listed in the
second column and a minimal resolution between the peaks for the
factor values in the third column. As these predictions are partly
based on a response surface extrapolation, the negative resolution
value in the third column of Table 3 is to be regarded as a tendency
to a poor resolution.
Fig. 5. Coefficient plot for the response surface regression of the three gradient
defining factors Start, Length and Slope to the sum of resolutions between the
peaks.
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Fig. 6. Surface contour plots based on all 62 experiments. The factors Start and Length span the space, the factor Slope is illustrated in three levels: 0 (left-hand subplot),
27.5  (center), 55 (right-hand). The contour lines show the predicted values for the overall sum of resolutions in the design space.

Fig. 7. Experimental results for the RSM-based predictions for a maximal (subfigure A), a medium (subfigure B) and a minimal (subfigure C) resolution in the multicomponent
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eparation of ribonuclease A, cytochrome c and lysozyme on SP Sepharose FF (see T
lack  continuous line displays the total protein concentration and the grey line the

able 3. Based on the DoE–RSM approach the optimal salt gradient
as predicted to be a 30 cv long step at 0.05 M NaCl. The RSM-

ased prediction failed, as obviously Ribonuclease A, cytochrome c
nd lysozyme elute simultaneously in the high salt wash step, what
esults in a resolution of 0.1 and not 9.46 (see Table 3) The exper-
mental result for the factors corresponding to the prediction for

edium resolution shows in fact a resolution of 4.2, a value, that is
lose to the predicted resolution of 4.8. (Fig. 7B). The experimental
esults for the factor set that was predicted to result in a minimal
esolution (third column in Table 3) show a sum of resolutions of 2.8
Fig. 7C). This result has a correct trend, as it is small but obviously
t is not minimal.

.2. Results of the mechanistic modeling approach
The monitored absorbance curves of the experiments planned
ith two onion designs (see Tables 1 and 2) were employed to
etermine the SMA  parameters by an inverse method. As the steric
actor � had neglegible influence on the fitting result in the ranges

able 3
redictions for factor sets inducing maximal, medium and minimal overall res-
lution in the three component system. These predictions are based on the
oE–RSM-approach.

Factor Maximal
resolution

Medium
resolution

Minimal
resolution

Start 10 19.26 40
Length 30 10 26
Slope 0 2.08 55
Predicted resolution 9.46 4.8 −3.3
Exp.  determined resolution 0.1 4.2 2.8
). The salt gradient is displayed as ratio of elution buffer. In the chromatograms the
ntration of cytochrome c.

of 20–40, it was  fixed during the optimization of Eq. (9) to a rea-
sonable value of 30. The estimated SMA  parameters for all three
components are given in Table 4. These parameters provided the
best fit between model response and chromatograms monitored at
the Ettan LC system.

The first column shows the estimated characteristic charges for
the three proteins, ribonuclease A (1.6), cytochrome c (2.8) and
lysozyme (3.4). The ascending order of these values correlates with
the elution sequence. In addition, adsorption and desorption coef-
ficients were estimated – their ratio can be summed up to the
equilibrium coefficient (4th column of Table 4). The parameters
in Table 4 are in the limits of experimentally determined SMA
parameters and are therefore reasonable (compare for example
with parameters in [24,35,39]). The completely calibrated mecha-
nistic model was  then employed to predict optimal gradient factors
leading to a maximal or minimal sum of resolutions (see Section
3.4.2). The predicted factors for maximal and minimal resolution
are presented in Table 5. Particularly the prediction for a minimal
overall resolution differs from the RSM-based prediction (see the
third column of Table 3).
The optimal gradient, according to the mechanistic model,
begins with a concentration of 25.19% of the elution buffer. The
slope of the gradient is very smooth. It requires the addition of

Table 4
Table of SMA parameters determined with the inverse method.

� kads kdes keq � (fixed)

Ribonuclease A 1.6 6.2 22.16 0.27 30
Cytochrome c 2.8 4.6 17.16 0.27 30
Lysozyme 3.4 1.6 11.78 0.14 30
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Fig. 8. Results for the mechanistic model-based prediction for a maximal (subfigure A) and minimal resolution (subfigure B) for the separation of ribonuclease A, cytochrome
c  and lysozyme on SP Sepharose FF with a bilinear gradient. The continuous lines display the overall protein concentration (black) and the concentration of cytochrome c
(grey).  The dotted lines display the model-based prediction. Subfigure C shows the chromatogram for the RSM-predicted medium resolution superimposed with the highly
a

0
e
t
g
i
i
(
m
(
r
f
m
a
e
p
r
g
m

f
s

o
t
w
m
f
b
e
i
m
a
d
c
a
t

T
P
t

designs (see Tables 1 and 2). The high number of experiments
was  necessary, because the results of the first design (cmp. Fig. 4)
showed the optimal settings to lie at the border of the design space.
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ccurate model prediction.

.01% of high salt buffer per cv to the elution buffer. The gradient
nds after 28.37 cv with 27.77% of the elution buffer. The mechanis-
ic model proposes, similar to the DoE–RSM-prediction, a step-like
radient for the best resolution between proteins. The correspond-
ng experimental results to the factors given in Table 5 are shown
n Fig. 8. The peak predictions for ribonuclease A and lysozyme
first and third peak) are very accurate compared to the experi-

ental data (continuous lines). The prediction for cytochrome c
peak in the center) is slightly shifted to reality. Nevertheless, the
esolution between all protein peaks is high. The predicted factors
or minimal resolution (2nd column of Table 5) induce the chro-

atogram displayed in Fig. 8B. The resolution is obviously minimal,
s salt concentration rises in a step from 0 to 100% and all proteins
lute at once. In Fig. 8C again the experimental results for the RSM-
redicted medium resolution are shown. In addition, the model
esponse for this gradient is displayed with dotted lines. This figure
ives a good example for the high predictivity of the mechanistic
odel.
Based on these encouraging results, a model-based prediction

or a changed objective was employed: the optimization of the
pecific resolution between only cytochrome c and lysozyme.

The optimal separation gradient with respect to the changed
bjective was predicted with the calibrated mechanistic model and
hen experimentally validated. Fig. 9 shows the optimized gradient
ith the predicted chromatogram in dotted lines, whereas experi-
ental data is given in continuous lines. Even though the prediction

or cytochrome c was again slightly shifted, the favoured resolution
etween the cytochrome c and lysozyme peaks was high, due to this
xtraordinary gradient with a negative slope at its beginning. Very
nteresting is the fact that cytochrome c elutes in two  parts – the

ajor part of it elutes previously to the sharp bend in the gradient
nd the minor part afterwards. This can be explained by the fact that
ue to the low salt concentration at the end of the falling gradient, a

ertain proportion of protein molecules binds again to the column
nd is only eluted with the following rising salt concentration after
he sharp bend in the elution gradient.

able 5
redictions for factor sets inducing maximal and minimal overall resolution in the
hree component system. These predictions are based on mechanistic modeling.

Factor Maximal resolution Minimal resolution

Start 25.19 100
Length 28.37 30
Slope 2.58 0
5. Discussion

An empiric response surface modeling approach and a mech-
anistic modeling approach were compared and examined with
respect to performance, predictivity and potential synergies
considering the optimization of chromatographic separation pro-
cesses. On the one hand, this comparison and evaluation was
performed theoretically (see Section 2), on the other hand a
direct comparison of performance was achieved by applying both
approaches to a case study: the optimization of bilinear elution gra-
dients for the separation of a three-component mixture. Two of the
components had a very similar pI, what increased the problem’s
complexity.

62 experiments were planned, based on two  D-optimal onion
0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

time [s]
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

ra
tio

Fig. 9. Result for a model-based optimization of the bilinear gradient considering
a  maximal resolution between cytochrome c and lysozyme. The predicted chro-
matogram (total protein conc.: black dotted line, cyt. c conc.: grey dotted line) and
the  experimental data (continuous lines) are superimposed.
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in the next step and be employed for accurate predictions on the
4 A. Osberghaus et al. / J. Ch

his situation should be possibly omitted with regard to higher
redictiveness of the RSM-model A quadratic model function with

nteraction terms was fitted to the results of both onion designs.
his regression established a functional relationship between the
bjective function (sum of resolutions) and the gradient shape reg-
lating factors Start, Length and Slope.  The coefficient plot (see
ig. 5) revealed the most important factors and their influence on
he objective function. Based on this empiric model function and
he modeling surfaces (see Fig. 6), the factor setups for different
ualities of separation (maximal, medium and minimal resolution)
ere predicted (see Table 3), the validation experiments were per-

ormed and results compared with the predictions (see Fig. 7). The
nalysis of the response surfaces showed that the examined sys-
em is significantly not robust, particularly close to the response
urface’s maximum. A small change in the shape of the bilinear gra-
ient induces considerable effects on the separation. An example
or this are the factors of the optimal gradient predictions of both
pproaches that are quite close to each other (compare the first
olumns of Tables 3 and 5); however, the separation results dif-
er significantly (Figs. 7A and 8A). The predictivity analysis of the
oE–RSM-approach showed that the predictions had correct trends
ut were inaccurate, especially for extremal points. The DoE–RSM-
ased prediction for the maximal resolution of peaks failed. The
ame was true for the prediction with respect to a minimal resolu-
ion. An important reason for the failure of RSM in the prediction
f the separation results, is the fact that the optimal factor set
as located at the edge of the design space, where interpolation is
ore probable to fail due to the lesser number of reference points.

he prediction for the minimal resolution probably failed, because
xtrapolations outside the ranges of the original design space are
roblematic for empiric RSM, as it only can predict continuous
rends. In addition, a very important reason for the low predic-
ivity is indicated by the low coefficient of determination R2 = 0.78.
uadratic RSM can only handle up to quadratic complexity. The

ack of fit shows that this system is definitely more complex. As
he predictions were based on a model explaining only about 78%
f the variety in the experimental data, the probability to fail was
ncreased.

The sorption parameters of the mechanistic model could be
etermined by the inverse method in this case study based on
he DoE-planned datasets (see Table 4). The calibrated chro-

atography model was employed for the numerical optimization
f the separation problem. The elution gradient was optimized
ith respect to maximal and minimal overall resolution between

he component peaks (see Table 5). The validation experiments
dentified the mechanistic model to be successful and highly pre-
ictive (see Fig. 8). The optimal gradients were predicted correctly.
hile it seems to be obvious for experienced experimenters that

n immediate step elution at 0.5 M gives no separation, this
act is not obvious for a model. The correct prediction in this
ase emphasizes the superiority of the introduced mechanistic
odeling approach. The extrapolation of data beyond the bor-

ers of the underlying experimental design was possible, because
he model is based on mechanistic processes in chromatogra-
hy.

The prediction of cytochrome c data was slightly less accurate
han the prediction of retention time and peak shape for the other
omponents. This can be caused by protein–protein-interactions
r other effects that were not considered in the modeling, like,
or example pH-effects induced by the salt gradient. Without re-
alibration, an optimal gradient for a high resolution between
ytochrome c and lysozyme was calculated and the result showed

gain a high predictivity for extrapolated issues (see Fig. 9). This
esult could not have been so rapidly achieved with the DoE–RSM
pproach, as after the recalculation of the specific objective, the
ultivariate regression function would have needed re-calibration.
ogr. A 1237 (2012) 86– 95

Moreover, the optimal gradient was  again located outside of the
original design space, where the RSM-approach has a very low
predictivity.

A separation optimization considering different pH conditions
was  no issue in this manuscript. Definitely a better resolution
can be obtained at a different pH condition. Though there are
a lot of promising approaches to this modeling issue in mech-
anistic chromatography models (see [40,41]), no approach is
fully established. Thus, a comparison of modeling approaches
including the optimization of pH conditions has not yet been
made.

5.1. Conclusion and outlook

Two  approaches for optimization in chromatography processes,
a DoE–RSM approach and an approach based on mechanistic mod-
eling, were to be compared based on their theoretical background
and on their performance in a multicomponent separation process.

This comparison revealed advantages and disadvantages of
both approaches. An advantage of the DoE–RSM-approach is the
comfortable and quick calibration leading to reliable predictions
with respect to simple correlations inside the design space. For
example, correlations between salt concentration in the buffer at
gradient start and the retention time of the first peak could be
predicted very accurately (data not shown). Another advantage of
the DoE–RSM-approach is the easy identification of factor impor-
tance and influences on the objective as well as of the system’s
robustness.

Nevertheless, the DoE–RSM approach is significantly limited
when dealing with complex chromatographic processes. The
empiric multilinear model revealed a lack of fit and predictions
with respect to an optimal elution gradient for separation failed
due to this lack of fit and low robustness of nonlinear gra-
dient elution processes. Results from extrapolation beyond the
design space were not reliable as they showed large deviances
to the correct results. This fact demands for re-calibration of
the DoE–RSM-approach, whenever a new objective is chosen for
optimization.

A disadvantage of mechanistic modeling, compared to simple
screening methods and the DoE–RSM-approach, is the higher pre-
liminary experimental effort with respect to model calibration and
the need for efficient solution algorithms for the partial differ-
ential equation system. Nevertheless, it could be shown that the
model could easily be calibrated based on the DoE-planned exper-
iments. The predictions inside and beyond the design space were
highly accurate and the optimization of the elution gradient was
successful for various objectives. Re-calibration was not necessary.
The knowledge gain with respect to the process was high, because
all parameters are of mechanistic nature. Thus, the completely
calibrated model could now be employed for similar separation
problems.

The comparison of the two approaches for the optimization
of chromatographic separation processes reveals synergies that
could lead to new concepts of optimization. Based on these two
approaches, an optimization could start with the DoE–RSM-based
modeling, revealing factor importances and complexity of the
problem. Additionally, this strategy allows for information on
robustness issues, for first predictions concerning optimal factor
settings and provides sufficient experiments for the calibration of
the mechanistic model. The mechanistic model could be calibrated
process and for the handling of changing objectives as well as for
quantitative robustness analysis and process monitoring. This con-
cept will be applied and refined in ongoing research on various
(industrial) processes.
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omenclature

Unit Definition
bbreviation
v column volume
oE design of experiments
TS high throughput screening

EC ion exchange chromatography
SM response surface modeling
MA steric mass action

i M concentration of component i on column level
i,p M concentration of component i in the mobile phase

on particle level
p objective value/response at a DoE-center point
salt mM salt concentration on particle level
ax m2 s−1 axial dispersion

RSM empiric response surface model function
f,i m/s  film transfer coefficient for component i

i,ads s mM−� adsorption coefficient of component i

i,des s mM−� desorption coefficient of component i

i,eq equilibrium coefficient of component i

C m column length
total number of factors in the experimental plan

i M concentration of component i on the particle
surface

2 coefficient of determination
p m particle radius
ep reproducibility
esP1,P2 resolution between peaks belonging to the

proteins P1 and P2
int ms−1 interstitial flow rate

p particle porosity
c column porosity

M ionic capacity
P ml  first moment of the peak belonging to protein P

i characteristic charge of component i

i steric factor of component i

P square root of the second moment of the peak
belonging to protein P

est parameters that will be estimated in the least
squares optimization solving the inverse problem

fix parameters that are fixed during the least squares
optimization solving the inverse problem

grad parameters/factors that describe the unique shape
of  a elution gradient
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